Binary Tree Level Order Traversal
Problem Statement
You’re a tree surveyor mapping a binary tree level by level, from top to bottom, left to right. Return a list of lists, each containing the node values at that level. This medium-level BFS adventure is a panoramic sweep—queue up and explore!
Example
Input: root = [3,9,20,null,null,15,7]
Tree:
3 / \ 9 20 / \ 15 7
Output: [[3], [9, 20], [15, 7]]
Input: root = [1]
Output: [[1]]
Input: root = []
Output: []
Code
Java
Python
JavaScript
class Solution { public List> levelOrder(TreeNode root) { List
> result = new ArrayList<>(); if (root == null) return result; Queue
queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { int levelSize = queue.size(); List level = new ArrayList<>(); for (int i = 0; i < levelSize; i++) { TreeNode node = queue.poll(); level.add(node.val); if (node.left != null) queue.offer(node.left); if (node.right != null) queue.offer(node.right); } result.add(level); } return result; } }
from collections import deque class Solution: def levelOrder(self, root): if not root: return [] result, queue = [], deque([root]) while queue: level_size = len(queue) level = [] for _ in range(level_size): node = queue.popleft() level.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) result.append(level) return result
function levelOrder(root) { if (!root) return []; let result = [], queue = [root]; while (queue.length) { let levelSize = queue.length; let level = []; for (let i = 0; i < levelSize; i++) { let node = queue.shift(); level.push(node.val); if (node.left) queue.push(node.left); if (node.right) queue.push(node.right); } result.push(level); } return result; }
Explanation
- BFS Insight: Queue processes nodes level by level, ensuring top-down order.
- Flow: For each level, dequeue all nodes, enqueue their children, repeat.
- Example Walkthrough: [3,9,20,null,null,15,7] → queue=[3], [9,20], [15,7] → [[3],[9,20],[15,7]].
- Key Detail: levelSize tracks nodes per level to separate results.
- Alternative: DFS with level tracking possible but less intuitive.
Note
Time complexity: O(n), Space complexity: O(w) where w is max width. A BFS beauty—layered and lovely!